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A variety of methods are available for the preparation of
R-heterosubstituted carbonyl compounds in enantiomerically
enriched form.1-3 Excellent levels of stereocontrol have been
achieved in the reaction of chiral enolates with heteroatomic
electrophiles4-6 and in the addition of carbonyl anion
equivalents to aldehydes or imines.7-11 However, a common
feature of these strategies is that the choice of heteroatomic
functional group affects both reactivity and selectivity in the
asymmetric induction event. Such substrate dependence
could be avoided by the enantioselective preparation of a
general chiral precursor that could be stereospecifically
transformed into a variety of R-heterosubstituted carbonyl
compounds (Scheme 1). This strategy is exemplified by
Corey’s one-pot conversion of (trichloromethyl)carbinols,
generated by oxazaborolidine-catalyzed asymmetric reduc-
tion of trichloromethyl ketones, into R-azido and R-hydroxy
acids.12,13 The chiral precursor in this case is a reactive gem-
dichlorooxirane formed upon deprotonation of the carbinol
(X ) Y ) Cl in Scheme 1), while an in situ nucleophile
provides the heteroatomic functional group. An alternative,
auxiliary-based approach in which the chiral precursor could
be isolated as a single diastereoisomer would provide ad-
ditional opportunities for stereochemical control. This paper
reports such an approach to the stereospecific formation of
R-heterosubstituted carbonyl compounds, in which the chiral
precursor is a crystalline spirocyclic bis-sulfinyl oxirane (X
) Y ) SOR), isolable in greater than 98% diastereomeric
and enantiomeric excess.

The preparation of spirocyclic epoxides such as 1/2 has
previously been attempted via the corresponding halohy-
drins, themselves formed by condensation of 2-halogeno-1,3-

dithiane 1,3-dioxide with aldehydes.14 This route was
abandoned due to the inefficiency of the ring-closure step,
which was attributed to the deactivating effect of the two
sulfoxides. It was decided, as an alternative, to attempt the
diastereoselective epoxidation of ketene thioacetals 3, which
could potentially be accessed by a Wadsworth-Emmons
reaction using phosphonate 4. Phosphonate 4 was prepared
in racemic form by sodium periodate oxidation of the known
phosphonate 5.15 Asymmetric oxidation of 5 was achieved
in excellent enantiomeric excess using the Modena protocol
(Scheme 2),16 which has previously been successfully applied
by ourselves to the oxidation of 2-carbethoxy-1,3-dithiane17

and by Page to the oxidation of other 2-substituted 1,3-
dithianes.18 The enantiomeric excess of 4 was determined
as >98% by chiral shift 31P NMR using the Pirkle shift
reagent.19 The absolute configuration of 4 was assigned by
analogy with previous results.20

Wadsworth-Emmons-type olefination of R-phosphoryl
sulfones21 and sulfoxides22,23 with aldehydes are prece-
dented; however, the same conditions were unsuccessful
when applied to the bis-sulfoxide 4. After screening a
variety of bases,24 it was found that lithium hydroxide25 gave
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Scheme 1

Scheme 2a

a Racemic oxidation: NaIO4, 30% H2O/MeOH, 53% yield. Asym-
metric oxidation: PhC(CH3)2OOH (4 equiv), Ti(OiPr)4 (0.5 equiv), (+)-
DET (2 equiv), CH2Cl2, 43% yield, >98% ee.
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the best results in terms of rate and yield. These conditions
were applied to a range of aldehydes, and good yields of the
ketene thioacetals were obtained (Table 1).

Epoxidation of the bis-sulfoxides 3 was attempted using
the nucleophilic oxidizing agents sodium hydroperoxide and
lithium tert-butyl peroxide, following procedures developed
for the epoxidation of electron deficient alkenes.26 These
conditions have been found to afford high diastereoselec-
tivities in the epoxidation of vinyl sulfoximines.27 High
diastereoselectivity has also been achieved in the epoxidation
of a limited range of vinyl sulfoxides,28 although in several
cases concomitant oxidation of the sulfoxide was observed.29

The results of oxidation of the bis-sulfoxides 3 are shown in
Table 2. Substrate 3a (R ) Ph) reacted cleanly and rapidly
with sodium hydroperoxide (method A), epoxide 1a being
isolated as a single diastereoisomer (entry 1) simply by
addition of water and extraction using dichloromethane. No

oxidation at sulfur was observed. Electron-deficient aro-
matic groups (entry 2) lowered the diastereofacial selectivity,
as did aliphatic ones (entries 7 and 8), but high selectivity
could be restored in these cases by using lithium tert-butyl
peroxide as the oxidizing agent (method B). The electron-
donating p-methoxyphenyl substituent stabilizes substrate
3c through extended conjugation and would be expected to
destabilize the target epoxides 1 and 2. No reaction occurred
with sodium hydroperoxide, and prolonged exposure to
lithium tert-butyl peroxide resulted only in decomposition.

Ring opening of the epoxide 1a with benzhydrylamine30,31

using acetonitrile as solvent yielded the protected amino
amide 6 in excellent yield (81%) and enantiomeric excess
(>98%) (Scheme 3), along with the expected byproduct, 1,2-
dithiolane 1-oxide.14

The absolute stereochemistry of the newly generated
stereocenter was confirmed by reaction of (+)-1a with the
bidentate nucleophile (1R,2R)-1,2-diaminocyclohexane, which
furnished 7 in good yield (65%) and as a single diastereoi-
somer. The relative stereochemistry of the product was
determined by NOE studies (Scheme 4), which, by inference,
proved the stereochemistry of the epoxide 1a.31

In conclusion, we have shown that enantiomerically and
diastereomerically pure spirocyclic bis-sulfinyl oxiranes can
be prepared in four steps. These novel structures represent
potentially versatile chiral substrates for the preparation of
a variety of R-heterosubstituted carbonyl compounds. Their
synthetic utility has been demonstrated by the synthesis of
two amino amides with complete control over the newly
generated stereocenter.
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Table 1. Olefination of 2-Phosphoryl-1,3-dithiane
1,3-Dioxide

R in RCHO solvent
reflux

time (h) product
yield
(%)

Ph 1,4-dioxane 3 3a 70
p-O2NC6H4 THF 2 3b 87
p-MeOC6H4 1,4-dioxane 4 3c 62
p-ClC6H4 1,4-dioxane 4 3d 84
cyclo-C6H11 1,4-dioxane 4 3e 71

Table 2. Nucleophilic Epoxidation of Ketene
Dithioacetals

entry R method
T (°C),

reaction time
yield
(%)

ratio
1:2

1 Ph A -10, 20 min 81 >96:4a

2 p-O2NC6H4 A -20, 10 min 81 73:27
3 p-O2NC6H4 B -78 to rt, 18 h 70 >96:4a

4 p-MeOC6H4 A rt, 72 h 0b

5 p-MeOC6H4 B -78 to rt, 24 h 0c

6 p-ClC6H4 A -10, 10 min 96 >96:4
7 cyclo-C6H11 A -10, 10 min 98 67:33
8 cyclo-C6H11 B -78 to rt, 18 h 83 80:20
a Only one diastereoisomer was detected in the crude 1H NMR

spectrum. b The starting material did not react. c Decomposition
occurred under the reaction conditions.

Scheme 3

Scheme 4
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